Copied to
clipboard

G = C52:5C16order 400 = 24·52

4th semidirect product of C52 and C16 acting via C16/C4=C4

metabelian, supersoluble, monomial, A-group

Aliases: C52:5C16, C20.9F5, C5:2(C5:C16), C10.4(C5:C8), (C5xC10).5C8, (C5xC20).8C4, C2.(C52:5C8), C52:7C8.4C2, C4.2(C52:C4), SmallGroup(400,59)

Series: Derived Chief Lower central Upper central

C1C52 — C52:5C16
C1C5C52C5xC10C5xC20C52:7C8 — C52:5C16
C52 — C52:5C16
C1C4

Generators and relations for C52:5C16
 G = < a,b,c | a5=b5=c16=1, ab=ba, cac-1=a2, cbc-1=b3 >

Subgroups: 116 in 28 conjugacy classes, 14 normal (8 characteristic)
Quotients: C1, C2, C4, C8, C16, F5, C5:C8, C5:C16, C52:C4, C52:5C8, C52:5C16
2C5
2C5
2C10
2C10
25C8
2C20
2C20
25C16
5C5:2C8
5C5:2C8
10C5:2C8
10C5:2C8
5C5:C16
5C5:C16

Smallest permutation representation of C52:5C16
On 80 points
Generators in S80
(1 20 62 69 44)(2 63 45 21 70)(3 46 71 64 22)(4 72 23 47 49)(5 24 50 73 48)(6 51 33 25 74)(7 34 75 52 26)(8 76 27 35 53)(9 28 54 77 36)(10 55 37 29 78)(11 38 79 56 30)(12 80 31 39 57)(13 32 58 65 40)(14 59 41 17 66)(15 42 67 60 18)(16 68 19 43 61)
(1 44 69 62 20)(2 63 45 21 70)(3 22 64 71 46)(4 72 23 47 49)(5 48 73 50 24)(6 51 33 25 74)(7 26 52 75 34)(8 76 27 35 53)(9 36 77 54 28)(10 55 37 29 78)(11 30 56 79 38)(12 80 31 39 57)(13 40 65 58 32)(14 59 41 17 66)(15 18 60 67 42)(16 68 19 43 61)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,20,62,69,44)(2,63,45,21,70)(3,46,71,64,22)(4,72,23,47,49)(5,24,50,73,48)(6,51,33,25,74)(7,34,75,52,26)(8,76,27,35,53)(9,28,54,77,36)(10,55,37,29,78)(11,38,79,56,30)(12,80,31,39,57)(13,32,58,65,40)(14,59,41,17,66)(15,42,67,60,18)(16,68,19,43,61), (1,44,69,62,20)(2,63,45,21,70)(3,22,64,71,46)(4,72,23,47,49)(5,48,73,50,24)(6,51,33,25,74)(7,26,52,75,34)(8,76,27,35,53)(9,36,77,54,28)(10,55,37,29,78)(11,30,56,79,38)(12,80,31,39,57)(13,40,65,58,32)(14,59,41,17,66)(15,18,60,67,42)(16,68,19,43,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (1,20,62,69,44)(2,63,45,21,70)(3,46,71,64,22)(4,72,23,47,49)(5,24,50,73,48)(6,51,33,25,74)(7,34,75,52,26)(8,76,27,35,53)(9,28,54,77,36)(10,55,37,29,78)(11,38,79,56,30)(12,80,31,39,57)(13,32,58,65,40)(14,59,41,17,66)(15,42,67,60,18)(16,68,19,43,61), (1,44,69,62,20)(2,63,45,21,70)(3,22,64,71,46)(4,72,23,47,49)(5,48,73,50,24)(6,51,33,25,74)(7,26,52,75,34)(8,76,27,35,53)(9,36,77,54,28)(10,55,37,29,78)(11,30,56,79,38)(12,80,31,39,57)(13,40,65,58,32)(14,59,41,17,66)(15,18,60,67,42)(16,68,19,43,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,20,62,69,44),(2,63,45,21,70),(3,46,71,64,22),(4,72,23,47,49),(5,24,50,73,48),(6,51,33,25,74),(7,34,75,52,26),(8,76,27,35,53),(9,28,54,77,36),(10,55,37,29,78),(11,38,79,56,30),(12,80,31,39,57),(13,32,58,65,40),(14,59,41,17,66),(15,42,67,60,18),(16,68,19,43,61)], [(1,44,69,62,20),(2,63,45,21,70),(3,22,64,71,46),(4,72,23,47,49),(5,48,73,50,24),(6,51,33,25,74),(7,26,52,75,34),(8,76,27,35,53),(9,36,77,54,28),(10,55,37,29,78),(11,30,56,79,38),(12,80,31,39,57),(13,40,65,58,32),(14,59,41,17,66),(15,18,60,67,42),(16,68,19,43,61)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

40 conjugacy classes

class 1  2 4A4B5A···5F8A8B8C8D10A···10F16A···16H20A···20L
order12445···5888810···1016···1620···20
size11114···4252525254···425···254···4

40 irreducible representations

dim11111444444
type+++-+-
imageC1C2C4C8C16F5C5:C8C5:C16C52:C4C52:5C8C52:5C16
kernelC52:5C16C52:7C8C5xC20C5xC10C52C20C10C5C4C2C1
# reps11248224448

Matrix representation of C52:5C16 in GL5(F241)

10000
05124000
01000
00024051
000190190
,
10000
00100
02405100
00024051
000190190
,
1970000
00010
00001
020724000
01933400

G:=sub<GL(5,GF(241))| [1,0,0,0,0,0,51,1,0,0,0,240,0,0,0,0,0,0,240,190,0,0,0,51,190],[1,0,0,0,0,0,0,240,0,0,0,1,51,0,0,0,0,0,240,190,0,0,0,51,190],[197,0,0,0,0,0,0,0,207,193,0,0,0,240,34,0,1,0,0,0,0,0,1,0,0] >;

C52:5C16 in GAP, Magma, Sage, TeX

C_5^2\rtimes_5C_{16}
% in TeX

G:=Group("C5^2:5C16");
// GroupNames label

G:=SmallGroup(400,59);
// by ID

G=gap.SmallGroup(400,59);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,12,31,50,1444,970,5765,5771]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^16=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C52:5C16 in TeX

׿
x
:
Z
F
o
wr
Q
<